Assessment of the Effectiveness of Energy Transfer for Shore-to-Ship Fast Charging Systems

Author:

Kulat Hemat Sahebrao ,Dr. Vijaylaxmi Biradar

Abstract

Charging systems from shore to ship are typically designed based on a range of operational and design parameters, encompassing onboard power and propulsion needs, available charging durations, and the capacity of local power networks. In areas with weak grid infrastructure, onshore energy storage is often employed to facilitate high-power charging for vessels requiring short charging intervals. Nevertheless, incorporating on-shore energy storage adds complexity to the system, and the selection of system configuration can profoundly affect the efficiency of energy transfer from the grid to the vessel. This study presents a comparative analysis of energy efficiency among AC, DC, and Inductive shore-to-ship charging solutions for short-distance ferries utilizing both AC and DC-based propulsion systems. Findings illustrate that an increased reliance on onshore battery power correlates with decreased overall energy efficiency during the charging process. Thus, optimizing energy efficiency necessitates careful consideration when distributing the load between the grid and onshore battery. Results indicate that DC charging offers advantages over other solutions for AC-based propulsion systems in terms of energy efficiency. However, for DC-based propulsion systems, the most efficient solution may be either DC or AC charging, contingent upon the distribution of load between the grid and onshore battery. Furthermore, it is inferred that despite adding additional conversion stages and complexity to the system, the energy efficiency of inductive charging is comparable to wired schemes. Considering the added benefits of contactless charging, such as reliability, safety, and robustness, these findings advocate for the adoption of inductive charging as a promising solution.

Publisher

Technoscience Academy

Reference21 articles.

1. Shipboard Electric Power Conversion: System Architecture, Applications, Control, and Challenges [Technology Leaders]

2. Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels

3. Tycho Brahe Hybrid Ferry Case Story. Available: https://www.deif.no/marine-and-offshore/cases/tycho-brahe. Accessed: 5-Dec-2019.

4. Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-In Hybrid Vessels

5. J. A. S. Giuseppe Guidi, "Minimization of Converter Ratings for MW-Scale Inductive Charger Operated under Widely Variable Coupling Conditions," in Proceedings of the IEEE PELS Workshop on Emerging Technologies: Wireless Power, 2015 WoW, Daejeon, Korea, June 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3