Synthesis and In-silico Study of Novel 1,3,4-Oxadiazole Derivatives : A Biologically active Scaffolds which induce Anti-tubercular activity by targeting Pteridine Reductase and Dihydrofolate Reductase

Author:

Arti S. Jadhav 1,Akshay R. Yadav 1,Dr. Shrinivas K. Mohite 1

Affiliation:

1. Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, Sangli, Maharashtra, India

Abstract

Heterocyclic compounds possess diverse biological properties that have led to intense study and research of these compounds. One of these compounds is Oxadiazole which has been found to exhibit various pharmacological activities. 1,3,4-oxadiazole having heterocyclic nucleus is a novel molecule which attract the chemist to search a new therapeutic molecule. Research on 1,3,4-oxadiazole and their synthetic analogues have revealed a variety of pharmacological activities including anti-microbial, anti-tubercular and insecticidal agents. Some of these compounds have also analgesic, anti-inflammatory, anti-cancer, anti-HIV agent, anti-parkinsonian and anti-proliferative agent. It was our interested to make novel derivatives of the titled compounds and evaluate the anti-tubercular activities. 1,3,4-oxadiazole and its derivatives (4a-4e) were obtained. The current study discusses the microwave irradiation synthesis of derivatives with the goal of generating new medications with high specificity for mycobacterium tuberculosis and low harm to the human.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3