Development of Feature Extraction Technique

Author:

Dr. Girish Katkar 1,Prakash Tukaram Raut 2

Affiliation:

1. Arts Commerce and Science College, Koradi, Nagpur, Maharashtra, India

2. Prof. Ramkrushna More College, Akurdi, Pune, Maharashtra, India

Abstract

A problem of personal verification and identification is an actively growing area of research in pattern recognition, computer vision, and digital image processing. A Face acknowledgment system is largely significant move toward in our life. Face acknowledgment method must be proficient to robotically identify images of face. This system mainly used to recognize a person and make available a protection during various features of our life. It is extremely complicated job for investigator to obtain mainly excellent face acknowledgment velocity in a variety of circumstances and benchmarks. Face recognition is grassland of computer visualization to uses faces to recognize or authenticate a human being. Principal Component Analysis (PCA) is accomplished and used for feature extraction and measurement lessening. The feature extraction is used to reduce the dimension of the face space by transforming it into feature representation. Features may be symbolic, numerical or both. The symbolic feature is color and numerical feature is weight. The combined feature extraction of PCA, LDA and Wavelet are used in proposed feature extraction algorithm for human face recognition system. The structure is tested and achieves high recognition rates. Information regarding individuals was stored in a database.

Publisher

Technoscience Academy

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3