High Throughput DWT Architecture for Signal Processing

Author:

N B V V S S Mani Manjari ,Dr. S V R K RAO

Abstract

The Discrete Wavelet Transform (DWT) is essential in signal processing systems because it is capable of accurately recording both frequency and time-domain features. Nevertheless, the computational intricacy of DWT presents notable obstacles to processing in real-time, particularly in circumstances with large data consumption. This study presents a VLSI technology designed to accelerate DWT processing utilizing CMOS gates. The goal is to improve throughput while maintaining area efficiency. The architecture utilizes parallelism and pipelining techniques to take use of the fundamental redundancy in DWT processing. We focus on creating customized processing units developed specifically for performing Discrete Wavelet Transform (DWT) operations. These units are tuned to make the best possible usage of CMOS gate capabilities. The proposed architectural is implemented using Cadence virtuoso software with 45 nm design. It is evaluated based on its area, power consumption, and latency. The current techniques employed to assess the proposed design include the utilization of the Radix-2 technique for FIR filter design, as well as the employment of look-up-table carry select adder (LCSLA), Vedic design (VD), and carry look-ahead adder (CLA). The developed system design has an area of 1764 um2, which makes it smaller than that of conventional approaches.

Publisher

Technoscience Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3