Affiliation:
1. Bauman Moscow State Technical University
Abstract
Currently, one of the promising areas in the development of network technologies is the wireless self-organizing networks based on the unmanned aerial vehicles, i.e., FANET (Flying Ad-Hoc Networks), which most important task in the course of their operation lies in organizing the effective data exchange. The distinctive properties of wireless self-organizing networks with altering topology are leading to the fact that technical solutions and methods of determination of the data delivery routes used in telecommunication networks with the traditional fixed architecture turn out to be inefficient in the special FANET networks and are not able to provide the required performance. At the same time, wireless self-organizing networks based on the unmanned aerial vehicles possess their own techniques used in data routing, which are subject to the requirements that take into account characteristic differences inherent in the networks of this type, including high mobility and low density of the nodes, dynamic and frequent topology alterations. Features and methods for determining data delivery routes were analyzed in the wireless self-organizing networks, which basis (nodes) were the unmanned aerial vehicles
Publisher
Bauman Moscow State Technical University
Reference17 articles.
1. Wei S., Ge L., Yu W., et al. Simulation study of unmanned aerial vehicle communication networks addressing bandwidth disruptions. Proc. SPIE, 2014, vol. 9085. DOI: https://doi.org/10.1117/12.2050765
2. Bekmezci I., Sahingoz O.K., Temel S. Flying Ad-Hoc networks (FANETs): a survey. Ad Hoc Netw., 2013, vol. 11, iss. 3, pp. 1254--1270. DOI: http://dx.doi.org/10.1016/j.adhoc.2012.12.004
3. Krichen L., Fourati M., Fourati L.C. Communication architecture for unmanned aerial vehicle system. In: Montavont N., Papadopoulos G. (eds). Ad-Hoc, Mobile, and Wireless Networks. ADHOC-NOW 2018. Lecture Notes in Computer Science, vol. 11104. Cham, Springer, pp. 213--225. DOI: https://doi.org/10.1007/978-3-030-00247-3_20
4. Chertova O.G., Chirov D.S. Building a core communication network which is based on small size unmanned aircraft vehicle without ground infrastructure. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli [High Technologies in Earth Space Research], 2019, vol. 11, no. 3, pp. 60--71 (in Russ.).
5. Hentati A.I., Fourati L.C. Comprehensive survey of UAVs communication networks. Comput. Stand. Interfaces, 2020, vol. 72, art. 103451. DOI: https://doi.org/10.1016/j.csi.2020.103451