Technique Employing Topology Optimisation to Determine Panel-to-Panel Support Bracket Positions in a Spacecraft Body

Author:

Borovikov A.A.1,Leonov A.G.2,Tushev O.N.3

Affiliation:

1. JSC "MIC "NPO Mashinostroyeniya"

2. JSC "MIC "NPO Mashinostroyeniya"; Bauman Moscow State Technical University

3. Bauman Moscow State Technical University

Abstract

The paper presents a real-time technique for determining the minimum number of panel-to-panel support brackets in an unpressurised spacecraft body and their installation positions employing topology optimisation in order to satisfy the dynamic compatibility requirements between the spacecraft and its launch vehicle. These support brackets connect honeycomb panels of the spacecraft body, which form the foundation of its structural design. The technique should be used at early design stages (such as pilot project and draft design) to generate structural design options in real time. We provide a general approach to using the technique as well as its detailed description based on a test problem example utilising the MSC. Patran/Nastran software package. We stated the optimisation problem mathematically and described its parameter selection. We list primary advantages and disadvantages of this technique as compared to the classical use of topology optimisation. Results obtained via the technique proposed may be used as guidelines for design engineers developing design documentation. The paper also outlines potential further development of the technique.

Funder

Российский Фонд Фундаментальных Исследований (РФФИ)

Publisher

Bauman Moscow State Technical University

Subject

Applied Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative correlation study of software systems for three-dimensional numerical simulation by analyzing results of the RST product topological optimization;Proceedings of Higher Educational Institutions. Маchine Building;2023-01

2. The Mathematical Model of the Stamp Material Redistribution Using Uniform Bar Structures;Current Problems and Ways of Industry Development: Equipment and Technologies;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3