On the question of computing convective heat transfer parameters in a laminar-to-turbulent boundary layer on an impermeable hemispherical surface

Author:

Gorskiy V.V.1,Leonov A.G.1,Loktionova A.G.2

Affiliation:

1. JSC MIC NPO Mashinostroyeniya; Bauman Moscow State Technical University

2. Bauman Moscow State Technical University

Abstract

In order to qualitatively solve the problem of computing convective heat transfer parameters in a laminar-to-turbulent boundary layer, it is necessary to numerically integrate differential equations descrybing that layer, completed by semiempirical turbulent viscosity models. These must be validated using results of experimental investigations where the gas dynamics of a gas flow around a body is correctly simulated. In terms of practical applications, developing relatively simple yet highly accurate computation methods is important. At present, the most widely used method to solve this type of problems in aviation and aerospace engineering is the effective length method developed by V.S. Avduevskiy, Academician. The paper shows that significant errors characterise computations using this method and traditional turbulent viscosity models to determine parameters of those blunted components of aircraft that are subjected to the highest temperatures. We present a solution to this problem, based on constructing systematic numerical solutions to the equations describing the laminar-to-turbulent boundary layer and subsequently approximating them. We prove that this approach ensures both acceptable computation accuracy and solution simplicity.

Publisher

Bauman Moscow State Technical University

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3