Improving the Metrological Characteristics of a Fiber-Optic Temperature Sensor by Effective Signal Processing Methods

Author:

Ershov I.A.1

Affiliation:

1. Novosibirsk State Technical University

Abstract

Signal processing in a fiber optic temperature sensor has a major impact on the metrological performance of the instrument. Therefore, continuous improvement of the signal processing algorithm is an important aspect of remaining competitive. Using a fiber-optic temperature sensor based on the Raman effect manufactured by Keepline LLC, it is shown how the application of effective signal processing methods can significantly reduce the instrument error. A fiber 8258 m long was used as a sensitive element, the spatial resolution of the instrument was 2 m. It is found that the noise in the signal is distributed according to the normal law. Measurements were made at instrument temperatures of 25.95 and 44.73 °C. Using linear regression analysis, it was found that heating the instrument causes a slope of the thermogram, which needs to be corrected. A logarithmic function was used to correct the thermogram. Thus, it was possible to reduce the range of temperature values along the length of the fiber from 3.47 to 2.35 °C, and RMS from 0.579 to 0.392 °C. In addition, the dependence of the transient process on the heating of the instrument is given and recommendations for adjusting the calibration coefficients are provided

Funder

Russian Foundation for Basic Research

Publisher

Bauman Moscow State Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3