Energy Level Quantization in the 1D Quantum Well in Case of Instantaneous Stationary State with the Non-Relativistic Wall and Particle Motion

Author:

Yurasov N.I.1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

The paper considers the problem of finding energy levels in the 1D quantum well in case of its width alteration at the nonrelativistic rate. According to the reviewed literature, the exact solution is known only in the case of nonrelativistic motion of the 1D quantum well wall at the constant rate. It is shown that motion with the constant rate is physically unrealizable. Therefore, it is necessary to find at least small areas of the Schrodinger equation solution for a wider range of nonrelativistic alterations in the 1D quantum well width. Analysis results presented in the study show existence of such areas. The found areas correspond to the instantaneous stationary states satisfying the Bohr quantization condition. In this case, the Dirichlet condition is also satisfied on the moving wall. It means that in this case energy of the level with the n number also becomes a function of the k second quantum number, which takes into account dynamic alteration in the 1D quantum well width. Variants were found of the k second quantum number spectrum and of the quantum level spectrum in various cases of the wall continuous motion with zero initial speed and finite acceleration. Within the framework of the analysis used, formulas were obtained to change the difference between energies of the two arbitrary levels. An analysis was made for the boundaries of the wall speed and the 1D quantum well width in considering the nonrelativistic problem. The obtained results and their possible applications are under discussion, including analysis of the problems related to nanotechnology

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Reference15 articles.

1. Akulin V.M. Coherent dynamics of complex quantum systems. Berlin, Heidelberg, Springer, 2006.

2. Stockmann H.-J. Quantum chaos. Cambridge Univ. Press, 2000.

3. Migdal A.B. Kachestvennye metody v kvantovoy teorii [Qualitative methods in quantum theory]. Moscow, Nauka Publ., 1975.

4. Doescher S.W., Rice M.H. Infinite square-well potential with a moving wall. Am. J. Phys., 1969, vol. 37, iss. 12, pp. 1246--1249. DOI: https://doi.org/10.1119/1.1975291

5. Makowski A.J., Dembinski S.T. Exactly solvable models with time-dependent boundary conditions. Phys. Lett. A, 1991, vol. 154, iss. 5-6, pp. 217--220. DOI: https://doi.org/10.1016/0375-9601(91)90809-M

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3