Spectroscopic Properties Study of Photonic Crystals and Nanostructures

Author:

Aliev I.N.1,Yashin M.M.2,Loboiko A.A.1,Gorbatova O.O.1,Lyatifov R.E.1

Affiliation:

1. Bauman Moscow State Technical University

2. Bauman Moscow State Technical University, RTU MIREA

Abstract

The paper proposes substantiation of dependence of dielectric permittivity, polariton dispersion and light group velocity in the sodium uranyl acetate on the wavelength. Many bands were found in the uranyl compounds transmission and absorption spectra. It was indicated that the polariton waves group velocity was decreasing anomalously in vicinity of the resonant absorption frequencies, i.e., the light was effectively stopped. This led to abnormal increase in the efficiency between the light interaction processes and the matter. Optical properties of the one-dimensional photonic crystal film formed by electrochemical etching of aluminum foil were studied. Experimental data on the transmission and reflection spectra in the region of first, second and third stop bands of the anode photonic aluminum oxide crystal were compared with theoretical dependence obtained from the known dispersion relation. Refractive indices of the first and second layers of various thin photonic crystal films, structure period and effective refractive index of the structures were theoretically calculated. Possibility of controlling position of the stop bands of one-dimensional photonic crystals in accordance with the Wulff --- Bragg’s relation was established. The studied photonic crystals could be used in experimental setups to register the light combined scattering spectra of dielectric media in the low-frequencies region

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3