Generalization of Ackermann Formula for a Certain Class of Multidimensional Dynamic Systems with Vector Input

Author:

Lapin A.V.1,Zubov N.E.2,Proletarskii A.V.1

Affiliation:

1. Bauman Moscow State Technical University

2. Bauman Moscow State Technical University; S.P. Korolev Rocket and Space Corporation Energia PJSC

Abstract

A compact analytical formula is obtained that determines the entire set of solutions of the modal control problem for a wide class of multidimensional dynamical systems with vector input, where the number of states is divisible by the number of control inputs, and the controllability index is equal to the quotient of this division. This formula generalizes to systems with the vector input the Ackermann formula applied to multidimensional systems with scalar input. The basis to obtaining the generalized Ackermann formula lies in the original concepts of the Luenberger generalized canonical form and operations of the matrices block transposition. For the most convenient calculation of controller, the original system with vector input is reduced to the generalized Luenberger canonical form using the two successive similarity transformations. A lemma is proved that demonstrates the compact analytical form of the inverse transformation matrix. Transition equivalence makes it possible to obtain a complete countably infinite parametrized set of solutions to the modal control problem under consideration. Its parametrization is provided by selecting block coefficients of the matrix polynomial, which determinant corresponds to the given scalar characteristic polynomial. In cases, where the matrix polynomial involved in parametrization is not reduced to the multipliers, the generalized Ackermann formula contains solutions to the modal control problem that could not be obtained using the existing decomposition method. Examples are presented demonstrating both suitability of the proposed formula for analytical synthesis of modal controllers by state in systems with vector input and its advantages in comparison with the decomposition method

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3