Acoustics and Hydrodynamics of the Drop Impact: Two Modes of Sound Packets Emission

Author:

Chashechkin Yu.D.1

Affiliation:

1. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Abstract

The paper studies acoustic signals in two modes of merging with water in a freely falling water droplet by the matched optical and acoustic methods. Only the primary sound packet was observed in the intrusive mode at the low drop speed, when the cavity was formed with a delay in the colored wake of the inflowing liquid. Experiments demonstrated the drop speed influence on the primary signal parameters. At the high droplet speed, the cavity started to form from the moment of the initial contact. The flow pattern became more complicated, the droplet substance was distributed over the emerged cavity surface and the grown crown in the form of separate fibers forming the line and mesh structures. The falling section of the primary acoustic signal was formed by a group of pulses with the complex spectral composition. Further, one or more low-frequency sound packets were registered after the pause. Spectral portrait of the secondary packets was related to the shape of the detached gas cavity. Smooth axisymmetric cavity was radiating the monochromatic packet. The complex-shaped cavity was transforming into a gas bubble and emitting the multi-frequency signal. Duration and amplitude of the secondary sound signals were depending on the transformation rate of the separated gas cavity into a smooth spheroidal bubble. The acoustic signal parameters were changing nonmonotonically with increasing velocity of the merging drop

Funder

Russian Science Foundation

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3