Analytical Solution of the Problem of Conjugate Heat Transfer between a Gasdynamic Boundary Layer and Anisotropic Strip

Author:

Formalev V.F.1,Kolesnik S.A.1,Garibyan B.A.1

Affiliation:

1. Moscow Aviation Institute (National Research University)

Abstract

The paper focuses on the problem of conjugate heat transfer between the thermal-gas-dynamic boundary layer and the anisotropic strip in conditions of aerodynamic heating of aircraft. Under the assumption of an incompressible flow which takes place in the shock layer behind the direct part of the shock wave, we found a new analytical solution for the components of the velocity vector, temperature distribution, and heat fluxes in the boundary layer. The obtained heat fluxes at the interface between the gas and the body are included as boundary conditions in the problem of anisotropic heat conduction in the body. The study introduces an analytical solution to the second initial-boundary value problem of heat conduction in an anisotropic strip with arbitrary boundary conditions at the interfaces, with heat fluxes which are obtained by solving the problem of a thermal boundary layer used at the interface. An analytical solution to the conjugate problem of heat transfer between a boundary layer and an anisotropic body can be effectively used to control, e.g. to reduce, heat fluxes from the gas to the body if the strip material chosen is such that the longitudinal component of the thermal conductivity tensor is many times larger than the transverse component of the thermal conductivity tensor. Such adjustment is possible due to an increase in body temperature in the longitudinal direction, and, consequently, a decrease in the heat flow from the gas to the body, as well as due to a favorable change in the physical characteristics of the gas. Results of numerical experiments are obtained and analyzed

Funder

Russian Foundation for Basic Research

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3