Numerical Investigation of Fluid Flow between Rotating Permeable Cylindrical Surfaces

Author:

Aleksandrov A.A.1,Devisilov V.A.1,Sharai E.Yu.1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

The paper presents numerical simulation results concerning fluid flow in the annular channel of a hydrodynamic filter comprising a perforated protective screen located between another perforated protective screen and a filtering screen, both cylindrical. We investigated the effects of the following two parameters on the flow structure: the perforated area of the protective screen and the width of the annular channel between the protective and filtering cylindrical screens. We established that increasing the annular channel width and the perforation area of the protective screen leads to secondary vortex structures forming in the channel. We obtained circumferential velocity distribution in the channel formed by the protective and filtering screens of the hydrodynamic filter. We show that, in the bracket of modal and design parameters under consideration, a power curve with an exponent in the 2.4--3.3 range may be used to approximate the circumferential velocity profile. We discovered that the structural and modal parameters of the channel between the rotating permeable cylindrical surfaces control the intensity of the deterministic separation process components. Channel width and perforation area are structural parameters; angular velocity is a modal parameter. Arranging the flow in a hydrodynamic filter in the way proposed makes it possible to decrease the intensity of random separation process components in multi-phase media.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical modeling practice for aircraft flow control problems;AIP Conference Proceedings;2023

2. Influence of a Porous Polyurethane Partition on Hydraulic Characteristics of the Flow and on Flame Front Propagation in an Open Channel;Herald of the Bauman Moscow State Technical University. Series Natural Sciences;2022-06

3. Study into Solid Particles Moving in the Working Areas of Part-Flow Hydrodynamic Filters with a Rotating Perforated Baffle;Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering;2022-06

4. Electroflotation treatment of wastewater from paint-and-varnish production;IOP Conference Series: Earth and Environmental Science;2021-07-01

5. Specifics of using an ejector-mixer with a tangential reagent inlet;IOP Conference Series: Earth and Environmental Science;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3