Experimental Study of Water Drop Vibrations in Airflow under Acoustic Impact

Author:

Volodin V.V.1,Golub V.V.1,El'yanov A.E.1,Mikushkin A.Yu.2

Affiliation:

1. Joint Institute for High Temperatures, Russian Academy of Sciences

2. Joint Institute for High Temperatures, Russian Academy of Sciences; Bauman Moscow State Technical University

Abstract

The study focuses on the interaction between a gas flow and liquid drops and describes the proposed experimental setup in detail. First, we experimentally studied the vibrations of a drop with a diameter of 1.4 mm in the airflow with a speed of 3.1--10 m/s and by a high-speed Phantom camera with a frame rate of 2000 fps, we took a series of photographs of the drop in the airflow at regular intervals. Then, we calculated the spectra of free vibrations of the drop in a gas flow, as well as the vibrations affected by sound vibrations of the air with a frequency of 0--1000 Hz and a sound pressure level of 0--121 dB, and found the gas flow and acoustic radiation parameter regions, at which the drop vibrations amplitude is higher or lower. Next, by the Kelvin --- Helmholtz instability theory, we theoretically analyzed the airflow-acoustic radiation mutual influence on the liquid drop and considered the drop possible values of the Weber number under experimental conditions. Findings of the research show that the drop does not fragmentize in the airflow. Finally, we found the drop vibration frequency values in the airflow, at which the amplitude of oscillations is constant

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Reference15 articles.

1. Gun’ko Yu.P., Kavun I.N. Unsteady pseudo-jump in a shock tube. J. Appl. Mech. Tech. Phy., 2020, vol. 61, no. 2, pp. 217--224. DOI: https://doi.org/10.1134/S0021894420020078

2. Lipatov I.I., Liapidevskii V.Yu., Chesnokov A.A. An unsteady pseudoshock model for barotropic gas flow. Dokl. Phys., 2016, vol. 61, no. 2, pp. 82--86. DOI: https://doi.org/10.1134/S1028335816020075

3. Zabaykin V.A. Control of pseudo shock by non-stationary effect. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-Chemical Kinetics in Gas Dynamics], 2011, vol. 12 (in Russ.). Available at: http://chemphys.edu.ru/issues/2011-12/articles/353

4. Snegirev A.Yu., Sazhin S.S., Talalov V.A. A model and computational algorithm for heat exchange and evaporation of droplets of dispersed liquid. NTV SPbGPU. Fiziko-matematicheskie nauki [St. Petersburg State Polytechnical University Journal. Physics and Mathematics], 2011, no. 1, pp. 44--54 (in Russ.).

5. Abramzon B., Sirignano W.A. Droplet vaporisation model for spray combustion calculations. Int. J. Heat Mass Transf., 1989, vol. 32, iss. 9, pp. 1605--1618. DOI: https://doi.org/10.1016/0017-9310(89)90043-4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3