Hydrogen-Air Flame Propagation in a Tube with Heat-Absorbing Lining

Author:

Volodin V.V.1,Golub V.V.1,Elyanov A.E.1,Mikushkin A.Yu.2

Affiliation:

1. Joint Institute for High Temperatures, Russian Academy of Sciences

2. Joint Institute for High Temperatures, Russian Academy of Sciences; Bauman Moscow State Technical University

Abstract

The paper presents experimental investigation results concerning combustion of initially stationary hydrogen-air mixture in a tube, one of the walls of which is lined with steel wool, a fibrous absorbent material. We used a schlieren photograph series imaging the cellular flame to obtain the distance traversed by the flame front as a function of time for the case when lining is absent and for three cases of steel wool lining of varied thickness and porosity. The paper shows that flame propagation rate in the hydrogen-air mixture containing 15 vol % hydrogen in a tube featuring a circular cross-section with a diameter of 54 mm when lining is present is up to 3 times higher than the flame propagation rate in a tube without lining. We calculated the density, heat capacity and thermal conductivity for the steel wool. We also calculated heat emission rate during combustion and the rate at which the steel wool layer absorbs heat from the region occupied by combustion products. We determined the percentage of heat energy absorbed by the steel wool and analysed how this effect affects flame propagation rate. We measured cell dimensions in an unstable flame propagating in a tube with and without lining. For the case of a flame front propagating across a fibrous absorbent material layer, we found that the average cell size observed decreases twofold

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of the Evolution of a Cellular Flame Front;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3