Kinetics of Phonon Interaction Taken into Account in Determining Thermal Conductivity of Silicon

Author:

Khvesyuk V.I.1,Qiao W.1,Barinov A.A.1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

The thorough study of the heat carriers --- quasiparticles --- phonons interaction resulted in a pioneering method for calculating the thermal conductivity of nonmetallic solids. As the interactions of phonons are much more complicated than those of usual atoms and molecules, it is necessary to take into account the presence of two types of phonons with different properties; the decay of one phonon into two or the fusion of two phonons into one as a result of interaction; the presence of two types of interaction of phonons, one of which is elastic, the other is inelastic (moreover, the type of interaction results from solving the energy and quasi-momentum conservation equations). The existing methods for determining thermal conductivity, which typically involve solving the Boltzmann transport equation, use the iteration method, whose parameter is the average time between successive phonon interactions, and the calculation results provide little information on all types of interactions. In this research, we developed a method of direct Monte Carlo simulation of phonon diffusion with strict account for their interaction owing to the energy and quasi-momentum conservation laws. Calculations of the thermal conductivity coefficient for pure silicon in the temperature range of 100---300 K showed good agreement with the experiment and calculations of other authors, and also made it possible to consider the phonon kinetics in detail

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamentally New Approaches for Solving Thermophysical Problems in the Field of Nanoelectronics;Russian Microelectronics;2023-12

2. Fundamentally new approaches to solving thermophysical problems in the field of nanoelectronics;Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3