Evaluating Possibilities of the Modern Chemical Kinetic Mechanisms of Acetylene Oxidation in Simulating the Non-Stationary Combustion Processes

Author:

Yakovenko I.S.1,Yarkov A.V.1,Turnin A.V.1,Tereza A.M.2,Novitski A.O.3,Krivosheyev P.N.3

Affiliation:

1. Joint Institute for High Temperatures, Russian Academy of Sciences

2. N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

3. A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus

Abstract

Acetylene is characterized by high reactivity and appears to be one of the promising gas fuels. However, possible combustion regimes of such fuels require a comprehensive study to be widely introduced in practice. This work is devoted to analyzing the modern kinetic mechanisms of acetylene oxidation. Current approaches to numerical analysis of the gas-dynamic flows in chemically active gas mixtures are a powerful tool in solving many industrial and energy problems. Obtaining positive results of numerical simulation of the non-stationary combustion and detonation processes is impossible without the use of reliable and efficient kinetic mechanisms. Kinetic mechanisms were considered describing the acetylene oxidation. Eight most optimal mechanisms were studied to identify the possibility of their implementation in detailed simulation of the non-stationary combustion processes, in particular, in flame acceleration and transition to detonation. Ignition delay time and laminar burning velocity were calculated using a complete model of the reacting medium gas dynamics. To evaluate correctness of the ignition and combustion parameters obtained values, they were compared with the available experimental data. Based on the obtained results analysis, conclusions were made on the possibility of applying the kinetic mechanisms under consideration, taking into account the combustion parameters accuracy and the computational efficiency

Funder

Russian Foundation for Basic Research

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3