Experimental Investigation of Boiling Heat Transfer in Freons Subjected to Forced Flow

Author:

Krapivin I.I.1,Belyaev A.V.1,Dedov A.V.1

Affiliation:

1. National Research University Moscow Power Engineering Institute

Abstract

At the moment there exist no methods for computing the boiling heat transfer coefficient in a fluid flow that could take into account the diversity of flow modes for a wide range of flow parameters. The majority of experimental and analytical studies were performed at low reduced pressures. Noticeably fewer investigations were carried out at high reduced pressures. At present, there are numerous empirical heat transfer computation methods developed for various freons at moderate reduced pressures and mass velocities. There also exist dedicated formulas for computing heat transfer in mini- and microchannels, obtained at low reduced pressures. Power and refrigeration systems could be fitted with mini-channel heat exchangers with custom working fluids subjected to high or moderate pressures. It is necessary to verify whether the existing methods for computing heat transfer are valid at higher reduced pressures, up to pr ≈ 0.6, in a channel with a hydraulic diameter of d ≈ 1 mm. The paper presents an overview of existing methods for calculating the heat transfer coefficient in two-phase flows; we then generalise these and compare their results to our own experimental data. We obtained said experimental data at the reduced pressures of pr = p/pcr = 0.43 and 0.56 in the mass velocity range of G = 200--1500 kg/(m2 · s). The paper describes our test bench and the experimental procedure

Funder

Russian Science Foundation

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3