Packets of Capillary and Acoustic Waves of Drop Impact

Author:

Chashechkin Yu.D.1

Affiliation:

1. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Abstract

Flows, capillary waves, and acoustic signals generated by a drop of water falling into a pool of degassed liquid were recorded by a high-speed video camera, hydro-phone, and microphone. A large-scale analysis of the system of equations was performed. The fast conversion of available surface potential energy is traced. The converted energy is stored in a thin layer in the vicinity of the merged free surfaces and creates large perturbations of temperature, pressure and flow velocity. Capillary waves start to radiate simultaneously with the formation of a cavity and the rise of the crown. New groups of capillary waves arise with all changes in the flow structure --- the formation and immersion of a splash, come back of secondary drops, the formation of cavities, the immersion of a streamer and droplets. Simultaneously with the waves, ligaments --- thin near-surface flows are formed that affect the transport and rupture of gas cavities. Thin flows quickly decay and form again when a new group of capillary waves is generated. A comparison of flow patterns and acoustic signals indicates that the generation of resonant sound packets is synchronized with the pinch-off gas fragments from the cavity or their breaking. The duration of the sound depends on the initial heterogeneity of the geometry of the sounding cavity, gradually transforming into a smooth spheroidal form

Funder

Russian Science Foundation

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3