Comparative Analysis of Robust Modification Quality for Principal Component Analysis to Perform Correlated Data Compression

Author:

Goryainov V.B.1,Goryainova E.R.2

Affiliation:

1. Bauman Moscow State Technical University

2. National Research University Higher School of Economics

Abstract

Principal component analysis is one of the methods traditionally used to solve the problem of reducing the dimensionality of a multidimensional vector with correlated components. We constructed the principal components using a special representation of the covariance or correlation matrix of the indicators observed. The classical principal component analysis uses Pearson sample correlation coefficients as estimates of the correlation matrix elements. These estimates are extremely sensitive to sample contamination and anomalous observations. To robustify the principal component analysis, we propose to replace the sample estimates of correlation matrices with well-known robust analogues, which include Spearman's rank correlation coefficient, Minimum Covariance Determinant estimates, orthogonalized Gnanadesikan --- Kettenring estimates, and Olive --- Hawkins estimates. The study aims to carry out a comparative numerical analysis of the classical principal component analysis and its robust modifications. For this purpose, we simulated nine-dimensional vectors with known correlation matrix structures and introduced a special metric that allows us to evaluate the quality of data compression. Our extensive numerical experiment has shown that the classical principal component analysis boasts the best compression quality for a Gaussian distribution of observations. When observations are characterised by a Student's t-distribution with three degrees of freedom, as well as when a cluster of outliers, individual anomalous observations, or symmetric contaminations described by the Tukey distribution are present in the data, it is the Gnanadesikan --- Kettenring and Olive --- Hawkins estimates modifying the principal component analysis that show the best compression quality. The quality of the classical principal component analysis and Spearman’s rank modification decreases in these cases

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of the Principal Components Method Modifications Resistance to Abnormal Observations;Herald of the Bauman Moscow State Technical University. Series Natural Sciences;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3