Signature method for determination of the lunar lander position by video image

Author:

Bobkov A.V.1,Xu Yang1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

The paper considers the problem of developing a visual navigation system to determine the proper position of the lunar lander. The paper proposes a new method for comparing the observed image frame with a vector map of the Moon based on the comparison of signatures. Experiments show that the proposed method is able to work in real time, is resistant to lighting conditions, small changes in the camera angle, scale and noise, and is able to work with a large number of gaps and false positives of the crater detector. The proposed method can be used in modern domestic and international space programs for the exploration of the Moon to ensure a soft high-precision safe landing of the lunar lander in a given area of the Moon.

Publisher

Bauman Moscow State Technical University

Subject

General Medicine

Reference23 articles.

1. Salamuniccara G., Loncaric S. Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data. Advances in Space Research, 2008, vol. 42 (1), pp. 6–19. DOI: 10.1016/j.asr.2007.04.028

2. Carr J.R., Sobek J.S. Digital scene matching area correlator (DSMAC). In: Image Processing for Missile Guidance, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980, 238, pp. 36–41.

3. Hu Tao, He Liang. Review of planetary crater detection algorithms (in Chinese). Manned Spaceflight, 2020, vol. 26 (5). https://doi.org/10.16329/j.cnki.zrht.2020.05.018

4. Feng Junhua, Cui Hutao. Autonomous crater detection and matching on planetary surface (in Chinese). Acta Aeronautica et Astronautica Sinica, 2010, vol. 31 (9), pp. 1858–1863.

5. Li J.F., Cui W., Baoyin H.X. A survey of autonomous navigation for deep space exploration (in Chinese). Mech. Eng., 2012, vol. 34, pp. 1–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3