A method developed for calculating the fuel filter pressure drop caused by carbon-containing sediments in a liquid hydrocarbon fuel

Author:

Altunin K.V.1

Affiliation:

1. Kazan National Research Technical University named after A.N. Tupolev — KAI

Abstract

The paper introduces a theoretical study related to a new method for calculating the fuel filter pressure drop caused by sedimentation in a liquid hydrocarbon fuel (cooler) medium; describes some thermophysical properties of sediments in fuel systems of various heat engines; examines the inventions aimed at preventing the failure of filters and pressure drop in them. As the overview and analysis of scientific and technical literature discovered no methods for calculating the pressure drop on the filters of heat engines and power plants, we developed a new formula for calculating the fuel filter pressure drop caused by sedimentation, taking into account the thermal and electrical nature of carbon-containing sediments. Using this formula, we found a new method for calculating the pressure change, which can be used to calculate the residual life of filter elements, theoretically approbated the new method relying on the results of experimental studies by previous researchers who used aviation kerosene. As a result, we obtained the fuel filter operating time to failure in several operating modes. The method proves to be valid, as it is applicable for calculating the pressure drop in almost all ground, air, and aerospace-based heat engines and power plants under various operating conditions of the fuel system. Furthermore, the method can be used with various materials of the metal walls of filter elements, pumping speeds of hydrocarbon fuel, pressures at the fuel filters inlet, temperature conditions inside the fuel supply, and cooling channels of engines and power plants.

Publisher

Bauman Moscow State Technical University

Subject

General Medicine

Reference25 articles.

1. Chertkov Ya.B. Sovremennye i perspektivnye uglevodorodnye reaktivnye i dizelnye topliva [Modern and promising hydrocarbon jet and diesel fuels]. Moscow, Khimiya Publ., 1968, 356 p.

2. Van Nostrand W.Z., Leach S.H., Haluske J. Economic Penalty Associated with the Fouling of Refinery Heat Transfer Equipment. Washington, 1981, pp. 619–643.

3. Altunin V.A., Altunin K.V., Dresvyannikov F.N., et al. Problemy vnutrikamernykh teplovykh protsessov v aviatsionnykh, aerokosmicheskikh i kosmicheskikh energoustanovkakh mnogorazovogo ispolzovaniya [Problems of intra-chamber thermal processes in aviation, aerospace and space power plants of reusable use]. In: Sb. tez. dokl. Mezhdunar. nauchnogo seminara «Problemy modelirovaniya i dinamiki slozhnykh mezhdistsiplinarnykh sistem» [Book of abstracts of the Int. Sc. seminar “Problems of modeling and dynamics of complex interdisciplinary systems”]. Kazan, KAI Publ., 2010, p. 12.

4. Altunin K.V. Forsunka [The nozzle]. Patent RF no. 2388966. Bul. no. 13, publ. May 10, 2010, 8 p.

5. Altunin K.V. Forsunka [The nozzle]. Patent RF no. 2447362. Bul. no. 10, publ. April 10, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3