Affiliation:
1. Don State Technical University
Abstract
High precision metal-cutting machines ensure that the programmed machine actuator trajectories correspond to the real ones. For lathes these are the trajectories of the longitudinal and transverse calipers of the system, as well as the spindle. The purpose of processing is to produce parts of a given quality while minimizing the manufacturing costs. The condition of the dynamic cutting system, determined by the trajectories of forces and deformations, affects the quality indicators of parts and the cutting efficiency, which depends on the intensity of tool wear. The properties of the system change depending on the phase trajectory of the power of irreversible transformations of the energy supplied to the cutting zone by the work performed. Their changes related with the evolution of the parameters of the dynamic link formed by cutting are manifested in the development of tool wear and changes in the quality of the part. Thus, the power of irreversible energy transformations is one of the internal factors causing changes in the output characteristics of processing and the state of the process. In this regard, when processing on machine tools, there is a problem of synergistic coordination of external control (for example, the CNC program) with internal one, the source of which is the irreversible transformation of the energy supplied to the cutting zone. The article considers the problem of synergetic coordination of external and internal controls during cutting process, the solution of which will allow increasing the efficiency of processing on CNC machines. A mathematical model of a controlled dynamic cutting system and control algorithms are proposed to improve the efficiency of processing parts of a given quality while minimizing the intensity of tool wear. Testing of the developed algorithms has shown that their use reduces the cost of manufacturing parts by 1.2.
Publisher
Bauman Moscow State Technical University
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献