Hygroscopic properties of hardwoods

Author:

Loskutov S.R., ,Shapchenkova O.A.,Aniskina A.A.,Pásztory Z., , ,

Abstract

Hygroscopic properties of nine hardwoods from Hungary were studied by moisture sorption isotherms, methods of thermogravimetry (TG) and differential scanning calorimetry (DSC). The studied wood species included oak, beech, hornbeam, black locust, lime, ash, maple, alder, and aspen. The parameters of the wood — water sorption system were calculated using the equations of Brunauer — Emmett — Teller (BET), Guggenheim — Anderson — de Boer (GAB), Frenkel — Halsey — Hill (FHH), Zimm — Lundberg (ZL), and the theory of the volume filling of micropores (TVFM). Within the frameworks of these models, the monolayer capacity, the apparent specific surface area, the parameters of clustering of water in wood, the characteristic energy of adsorption, and other parameters were calculated. Based on the data of TG and the fourth derivative of the mass loss rate contour during drying, the «fractional composition» of hygroscopic moisture was established. According to the Ozawa — Flynn — Wall isoconversion method, the dependence of the activation energy of moisture thermal desorption on the degree of drying was calculated. The enthalpy of vaporization of hygroscopic moisture ΔНvap was measured using DSC. The complex of measured and calculated parameters of the wood — water system made it possible to differentiate the studied hardwoods regarding the hygroscopic properties of wood. According to the value of the apparent specific surface area (BET, GAB) the wood species found to be in the following order: lime < black locust < beech < oak < hornbeam < ash < alder < maple < aspen. Hardwoods were ranked as follows by the value of the characteristic energy of adsorption Ec (TVFM): lime < beech < hornbeam < ash < black locust < oak < maple < alder < aspen. The intrinsic stresses in wood change in the same row as Ec. An increase in Ec indicates an increase in intrinsic mechanical stresses. Analysis of the enthalpy of vaporization of hygroscopic moisture during non-isothermal drying of wood revealed three sub-ranges of moisture content (0 — ~0,04; 0,04 — ~0,08 and > 0,08 g H2O/g dry weight). This, on the one hand, «unites» the wood species, on the other, differentiates them by the bonding energy of water in wood.

Publisher

Bauman Moscow State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3