Evaluation of lithostratigraphic units and groundwater potential using the resolution capacities of two different electrical tomographic electrodes at dual-spacing

Author:

AKINGBOYE Adedibu Sunny,BERY Andy Anderson

Abstract

The selection of a choice electrode is pertinent to attenuating noise and improving geophysical tomographic inversion results. Besides, the detailed understanding of the geodynamic condition of subsurface formation is crucial to sustainable potable groundwater abstraction. Hence, the subsurface lithostratigraphic units and groundwater potential of two sites (i.e., Site 1 and Site 2) within the Universiti Sains Malaysia were evaluated using borehole-constrained electrical resistivity tomography (ERT) and induced polarisation (IP) tomography. Both methods employed the resolution capacities of stainless-steel and copper electrodes at dual-spacing. The ERT and IP field data and inversion results for copper electrodes were generally robust due to the generated higher positive data points and lower RMS errors, percentage relative differences, and mean absolute percentage errors (MAPE) than the stainless-steel electrodes, especially at Site 1 with a profile length of 200 m and an electrode spacing of 5 m. However, both electrodes tend to produce inversion models with almost the same parameters at Site 2, using half the profile length and electrode spacing of Site 1, i.e., 100 m and 2.5 m, respectively. Thus, the sensitivities and resolution capacities of the tomographic electrodes are heavily influenced by electrode spacing, profile length, amount of injected current, and depth of investigation. The borehole lithostratigraphic units, typically sandy silt, sand, and silty sand, have good correlations with the ERT and IP inversion results. The variability in observed resistivity and chargeability values were due to heterogeneous weathered materials and saturating water fills within the fractured and deeply-weathered granitic bedrock, with <200 Ωm and a chargeability of >1.8 msec. The models' median depth of >40 m mapped for the weathered and/or fractured sections was suggestive of high groundwater-yielding capacity in boreholes to sustain a part of the university community. 

Publisher

Central Library of the Slovak Academy of Sciences

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3