Real magnetic stripping method in unexploded ordnance detection and remediation – a case study from Rohožník military training range in SW Slovakia

Author:

PAŠTEKA Roman,HAJACH Miroslav,BRIXOVÁ Bibiana,MIKUŠKA Ján,STANLEY John

Abstract

In this contribution we present results from a case-study, which was performed in collaboration between geophysicists and explosive ordnance disposal technicians at the Rohožník military training range in SW Slovakia. The aim of this study was to locate a deep-penetrated unexploded Mk-82 aerial bomb using high-definition digital magnetometry. The location where this bomb had entered the ground was known but its final position needed to be determined so that a safe excavation and disposal could be conducted. However, the detection of this unexploded ordnance object was complicated by the presence of intense magnetic interference from a number of near surface ferrous items including non-explosive test bombs, fragmentation and other iron junk. These items contributed a localised, high amplitude of magnetic clutter masking any deeper source. Our strategy was to approach the problem in three stages. First, we used magnetic data to locate the near surface items. After the detection and before the excavation of the searched objects, two quantitative interpretation methods were used. These involved an optimised modelling of source bodies and the application of a 3D Euler deconvolution. Both methods yielded acceptable results, but the former was found to be more accurate. After the interpretation phase, many of the items were then safely excavated and removed individually. A second magnetic mapping was then performed and from this data which was now significantly less cluttered, we were able to identify but not quantify, two deep source items and to confirm that all remaining near surface items were significantly smaller in size than a Mk-82 bomb. As the remaining near surface sources were interpreted as being contained within the surface one metre of soil and being small they could be assured to be non-explosive, it was considered most practical to mechanically excavate and remove this soil and the remaining objects contained.

Publisher

Walter de Gruyter GmbH

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3