Magnetic field analysis using the improved global particle swarm optimization algorithm to estimate the depth and approximate shape of the buried mass

Author:

HEIDARI Mahdieh,MESHINCHI ASL Mirsattar,MEHRAMUZ Mahmoud,HEIDARI Reza

Abstract

In this paper, the optimization algorithm based on the population as improved global particle swarm optimization is described and used for inverse modelling of two-dimensional magnetic field data. This algorithm is able to estimate the parameters of depth, shape factor, amplitude coefficient, magnetic inclination angle and origin point coordinates. To evaluate the efficiency of this method, the magnetic field of an artificial model was analysed, with and without added random noise. The results suggest that the proposed algorithm is capable of model parameter estimation with high accuracy. Accordingly, the improved global particle swarm optimization algorithm was used to analyse the magnetic field of the study area in the Ileh region in Iran located in Taybad city. The study area is very rich in terms of iron resources. The estimate for the study area is that the depth of the buried mass centre is about 114.9 m and its approximate shape is similar to a horizontal cylinder based on the calculated shape factor value which is 1.76. The calculated depth is an acceptable match with the average depth of drillings.

Publisher

Central Library of the Slovak Academy of Sciences

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3