Abstract
Concerning the Middle Triassic stratigraphic succession of the Northern Calcareous Alps (NCA), a modern, litho- and biostratigraphic oriented evaluation of the early- and middle Anisian Annaberg Formation is presented. Due to the fact, that Middle Triassic formations are characterized by a wide distribution within the NCA, any lithostratigraphic definitions of these formations would be of great benefit for mapping geologists, engineers and hydrogeologists. The lithostratigraphic term Annaberg Formation may substitute former designations like “Alpiner Muschelkalk”, “Anisian Limestone and Dolomite” or, partly, “Gutenstein Limestone”. It is exclusively of Anisian age and earlier then the Steinalm and Reifling Formation. Mainly based on microfacies data and lithological data, we define the Annaberg Formation (former: Annaberg Limestone) as one of the most significant Middle Triassic lithostratigraphic units within the NCA. After a detailed description of the type area, findings gained in other areas of the NCA are incorporated to obtain the largest possible overview about the lithological variability and constituents of the Annaberg Formation. As a result, we can describe the Annaberg Formation as mainly organic-rich, medium bedded wackestone, containing remnants of crinoids, little bivalves and gastropods. Typically, fossil-rich layers with accumulations of bivalves and crinoids can often be observed within the Annaberg Formation. In contrast to the Gutenstein Formation no siliceous concretions or fossils (like radiolarians) appear and the fauna is in the main shallow marine. The rock-colour varies from dark- to medium-grey and the bench thicknesses are greater than within the Gutenstein Formation sensu stricto. The fossil content is also larger than in the essentially anaerobe Gutenstein Formation. With respect to the Virgloria Formation the Annaberg Formation is rather planar bedded, not so rich in bioturbation-structures and poor in silica and clay. Hence, the depositional environment of the Annaberg Formation can be described as a restricted carbonate ramp succession, with only minor water movement and separated from the open sea by a shoal with crinoid and brachiopod meadows. Breccias may be an indication for collapse-structures and slumping. In addition, knife-cavity structures (“Messerstichkalke”) indicate an occasional hypersaline environment with precipitation of evaporite-minerals like gypsum. Fossil-rich layers with accumulations of molluscs and crinoids may indicate short-term storm affected sedimentation.
Publisher
Central Library of the Slovak Academy of Sciences