PENERAPAN ALGORITMA K-NEAREST NEIGHBOUR (K-NN) UNTUK PENENTUAN MAHASISWA BERPOTENSI DROP OUT

Author:

Ratniasih Ni Luh

Abstract

ABSTRACT<br />Drop out is a situation where students are expelled from college because of several factors, one of which is because the status of lectures is not active beyond 5 semesters for undergraduate students. The high level of success and low failure of students can reflect the quality of education in higher education. The high level of student drop outs can affect the value of Higher Education accreditation so that it will affect the level of public trust. Student data drop out becomes something important to be researched and analyzed, so it can be seen how the characteristics of students who have the potential to drop out as early as possible. The data of ITB STIKOM Bali students is very much so that they can utilize data mining techniques for data classification. In this study the K-NN method was implemented to classify students as potential drop outs and the student data used in this study were students of the 2014 Information Systems study program using 6 attributes, namely gender, age, religion, class status, practical work, and grades GPA. The results showed that the accuracy of the method was 81.50%.<br />Keywords: KNN, Drop Out, ITB STIKOM Bali<br />ABSTRAK<br />Drop out adalah suatu keadaan dimana mahasiswa dikeluarkan dari perguruan tinggi karena beberapa faktor salah satunya karena status perkuliahannya tidak aktif melebihi 5 semester untuk mahasiswa S1. Tingginya tingkat keberhasilan dan rendahnya kegagalan mahasiswa dapat mencerminkan kualitas pendidikan di perguruan tinggi. Tingginya tingkat drop out mahasiswa dapat mempengaruhi nilai akreditasi Perguruan Tinggi sehingga akan mempengaruhi tingkat kepercayaan masyarakat. Data mahasiswa drop out menjadi sesuatu hal yang penting untuk diteliti dan dianalisa, sehingga dapat diketahui bagaimana karakteristik mahasiswa yang berpotensi drop out sedini mungkin. Data mahasiswa ITB STIKOM Bali sangat banyak sehingga dapat memanfaatkan teknik data mining untuk klasifikasi data. Pada penelitian ini diimplementasikan metode K-NN untuk klasifikasi mahasiswa berpotensi drop out dan data mahasiswa yang digunakan dalam penelitian ini adalah mahasiswa program studi Sistem Informasi angkatan 2014 dengan menggunakan 6 atribut yaitu jenis kelamin, umur, agama, status kelas, kerja praktek, dan nilai IPK. Hasil penelitian menunjukkan bahwa tingkat akurasi metode sebesar 81.50%.<br />Kata kunci: KNN, Drop Out, ITB STIKOM Bali

Publisher

LPPM Universitas Dhyana Pura

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3