Combined System of Synchronized Simultaneous Control of Magnetic Plane Movement and Suspension

Author:

Мukhа А. МORCID,Plaksin S. VORCID,Pohorila L. MORCID,Ustymenko D. VORCID,Shkil Y. VORCID

Abstract

Purpose. The purpose of this work is the formation of conceptual approaches to the construction of an effective integrated system of simultaneous synchronized control of the movement and suspension of a maglev vehicle – a magnetoplane. Methodology. The paper uses a technique for simultaneous control of the movement and suspension of a maglev vehicle with the mutually coordinated application of both levitation methods, electromagnetic and electrodynamic, through individual control of the energy supply of each track coil. Findings. The conceptual control principles of a traction-levitation system in a hybrid mode of its operation are substantiated. The interaction of a track structure with a vehicle on an electrodynamic suspension with a linear drive is disclosed and the features of the implementation of the power unit are highlighted. Originality. It is shown that a significant improvement in maglev technology can be achieved due to the mutually coordinated combination of electromagnetic and electrodynamic methods of magnetic levitation and the use of a fundamentally different architecture for constructing a MAGLEV track. It is constructed not from long sections with three-phase power windings, but from discrete ones, they are also linear engine traction coils, and a component (load) of a solar track power plant located along the overpass. The power plant includes a photovoltaic module (solar battery) that converts solar energy into electricity, a storage device and an inverter. This construction makes possible independent supply of each travel coil and its autonomous control with the ability to switch to traction or levitation mode. The control concept is that each track coil can participate both in the creation of a static suspension due to the interaction of the magnetic field of the onboard superconducting magnet and the magnetic field of the track coils when a certain amount of direct current is applied to them, as well as the dynamic suspension provided during the train movement as a result of the interaction of the magnetic field of the onboard superconducting magnet and the magnetic fields created in the track coils by currents induced in them when the magnetic fields of the onboard superconducting magnet intersect. Practical value. The results are of practical value, as the use of such complex control system of the suspension and the magnetic plane movement will significantly improve the quality of MAGLEV technology, increase the efficiency and reliability of high-speed land transport based on electrodynamics levitation using superconducting magnets.

Publisher

Dnipropetrovsk National University of Railway Transport

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3