A Magnetic Resonance Imaging–Compatible Device to Perform In Vivo Anterior Knee Joint Loading

Author:

Park-Braswell Kyoungyoun,Shultz Sandra J.,Schmitz Randy J.

Abstract

Context: Greater anterior knee laxity (AKL) is associated with impaired sensory input and decreased functional knee stability. As functional magnetic resonance imaging (MRI) is the gold standard for understanding brain function, methods to load the anterior cruciate ligament in the MRI environment could further our understanding of the ligament’s sensory role in knee joint stability. Objective: To design and validate an MRI-compatible anterior knee joint loading device. Design: Descriptive laboratory study. Setting: University laboratory study. Participants: Sixteen healthy and physically active females participated (age = 23.4 [3.7] y; mass = 64.4 [8.4] kg). Interventions: The AKL was assessed by a commercially available arthrometer. The AKL was also assessed with a custom-made, MRI-compatible device that produced anterior knee joint loading in a manner similar to the commercial arthrometer while obtaining dynamic structural MRI data. Main Outcome Measurements: The AKL (in millimeters) at 133 N of loading was assessed with the commercial knee arthrometer. Anterior displacement of the tibia relative to the femur obtained at 133 N of loading was measured from dynamic MRI data obtained during usage of the custom device. Pearson correlations were used to examine relationships between the 2 measures. The 95% limits of agreement compared the absolute differences between the 2 devices. Results: There was a 3.2-mm systematic difference between AKL (6.3 [1.6] mm) and anterior tibial translation (3.2 [1.0] mm) measures. There was a significant positive correlation between values obtained from the commercial arthrometer and the MRI-compatible device values (r = .553, P = .026). Conclusions: While systematic differences were observed, the MRI-compatible anterior knee joint loading device anteriorly translated the tibia relative to the femur in a similar manner to a commercial arthrometer design to stress the anterior cruciate ligament. Such a device may be beneficial in future functional magnetic resonance imaging study of anterior cruciate ligament mechanoreception.

Publisher

Human Kinetics

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3