Converting Raw Accelerometer Data to Activity Counts Using Open-Source Code: Implementing a MATLAB Code in Python and R, and Comparing the Results to ActiLife

Author:

Brondeel Ruben12,Kestens Yan3,Rahimipour Anaraki Javad4,Stanley Kevin5,Thierry Benoit3,Fuller Daniel4

Affiliation:

1. 1Ghent University

2. 2Research Foundation—Flanders (FWO)

3. 3University of Montreal

4. 4Memorial University of Newfoundland

5. 5University of Saskatchewan

Abstract

Background: Closed-source software for processing and analyzing accelerometer data provides little to no information about the algorithms used to transform acceleration data into physical activity indicators. Recently, an algorithm was developed in MATLAB that replicates the frequently used proprietary ActiLife activity counts. The aim of this software profile was (a) to translate the MATLAB algorithm into R and Python and (b) to test the accuracy of the algorithm on free-living data. Methods: As part of the INTErventions, Research, and Action in Cities Team, data were collected from 86 participants in Victoria (Canada). The participants were asked to wear an integrated global positioning system and accelerometer sensor (SenseDoc) for 10 days on the right hip. Raw accelerometer data were processed in ActiLife, MATLAB, R, and Python and compared using Pearson correlation, interclass correlation, and visual inspection. Results: Data were collected for a combined 749 valid days (>10 hr wear time). MATLAB, Python, and R counts per minute on the vertical axis had Pearson correlations with the ActiLife counts per minute of .998, .998, and .999, respectively. All three algorithms overestimated ActiLife counts per minute, some by up to 2.8%. Conclusions: A MATLAB algorithm for deriving ActiLife counts was implemented in R and Python. The different implementations provide similar results to ActiLife counts produced in the closed source software and can, for all practical purposes, be used interchangeably. This opens up possibilities to comparing studies using similar accelerometers from different suppliers, and to using free, open-source software.

Publisher

Human Kinetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3