GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data

Author:

Migueles Jairo H.1,Rowlands Alex V.23,Huber Florian4,Sabia Séverine56,van Hees Vincent T.4

Affiliation:

1. 1PROFITH Research Group, University of Granada

2. 2University of Leicester

3. 3NIHR Biomedical Research Centre

4. 4Netherlands eScience Center

5. 5Inserm

6. 6University College London

Abstract

Recent technological advances have transformed the research on physical activity initially based on questionnaire data to the most recent objective data from accelerometers. The shift to availability of raw accelerations has increased measurement accuracy, transparency, and the potential for data harmonization. However, it has also shifted the need for considerable processing expertise to the researcher. Many users do not have this expertise. The R package GGIR has been made available to all as a tool to convermulti-day high resolution raw accelerometer data from wearable movement sensors into meaningful evidence-based outcomes and insightful reports for the study of human daily physical activity and sleep. This paper aims to provide a one-stop overview of GGIR package, the papers underpinning the theory of GGIR, and how research contributes to the continued growth of the GGIR package. The package includes a range of literature-supported methods to clean the data and provide day-by-day, as well as full recording, weekly, weekend, and weekday estimates of physical activity and sleep parameters. In addition, the package also comes with a shell function that enables the user to process a set of input files and produce csv summary reports with a single function call, ideal for users less proficient in R. GGIR has been used in over 90 peer-reviewed scientific publications to date. The evolution of GGIR over time and widespread use across a range of research areas highlights the importance of open source software development for the research community and advancing methods in physical behavior research.

Publisher

Human Kinetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3