Caffeine Improved Time to Exhaustion But Did Not Change Alternative Maximal Accumulated Oxygen Deficit Estimated During a Single Supramaximal Running Bout

Author:

Poli Rodrigo De Araujo Bonetti De,Miyagi Willian Eiji,Nakamura Fabio Yuzo,Zagatto Alessandro Moura

Abstract

The aim of the current study was to investigate the effects of acute caffeine supplementation on anaerobic capacity determined by the alternative maximal accumulated oxygen deficit (MAODALT) in running effort. Eighteen recreational male runners [29 ± 7years; total body mass 72.1 ± 5.8 kg; height 176.0 ± 5.4cm; maximal oxygen uptake (VO2max) 55.8 ± 4.2 ml·kg-1 ·min-1] underwent a graded exercise test. Caffeine (6 mg·kg-1) or a placebo were administered 1 hr before the supramaximal effort at 115% of the intensity associated with VO2max in a double-blind, randomized cross-over study, for MAODALT assessment. The time to exhaustion under caffeine condition (130.2 ± 24.5s) was 11.3% higher (p = .01) than placebo condition (118.8 ± 24.9 s) and the qualitative inference for substantial changes showed a very likely positive effect (93%). The net participation of the oxidative phosphorylation pathway was significantly higher in the caffeine condition (p = .02) and showed a likely positive effect (90%) of 15.3% with caffeine supplementation. The time constant of abrupt decay of excess postexercise oxygen consumption (τ1) was significantly different between caffeine and placebo conditions (p = .03) and showed a likely negative effect (90%), decreasing -8.0% with caffeine supplementation. The oxygen equivalents estimated from the glycolytic and phosphagen metabolic pathways showed a possibly positive effect (68%) and possibly negative effect (78%) in the qualitative inference with caffeine ingestion, respectively. However, the MAODALT did not differ under the caffeine or placebo conditions (p = .68). Therefore, we can conclude that acute caffeine ingestion does not modify the MAODALT, reinforcing the robustness of this method. However, caffeine ingestion can alter the glycolytic and phosphagen metabolic pathway contributions to MAODALT.

Publisher

Human Kinetics

Subject

Nutrition and Dietetics,Orthopedics and Sports Medicine,General Medicine,Medicine (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3