The Physiological Mechanisms of Effect of Vitamins and Amino Acids on Tendon and Muscle Healing: A Systematic Review

Author:

Tack Christopher12,Shorthouse Faye2,Kass Lindsy1

Affiliation:

1. 1University of Hertfordshire

2. 2Guy’s Hospital

Abstract

Aims/Objectives: To evaluate the current literature via systematic review to ascertain whether amino acids/vitamins provide any influence on musculotendinous healing and if so, by which physiological mechanisms. Methods: EBSCO, PubMed, ScienceDirect, Embase Classic/Embase, and MEDLINE were searched using terms including “vitamins,” “amino acids,” “healing,” “muscle,” and “tendon.” The primary search had 479 citations, of which 466 were excluded predominantly due to nonrandomized design. Randomized human and animal studies investigating all supplement types/forms of administration were included. Critical appraisal of internal validity was assessed using the Cochrane risk of Bias Tool or the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias Tool for human and animal studies, respectively. Two reviewers performed duel data extraction. Results: Twelve studies met criteria for inclusion: eight examined tendon healing and four examined muscle healing. All studies used animal models, except two human trials using a combined integrator. Narrative synthesis was performed via content analysis of demonstrated statistically significant effects and thematic analysis of proposed physiological mechanisms of intervention. Vitamin C/taurine demonstrated indirect effects on tendon healing through antioxidant activity. Vitamin A/glycine showed direct effects on extracellular matrix tissue synthesis. Vitamin E shows an antiproliferative influence on collagen deposition. Leucine directly influences signaling pathways to promote muscle protein synthesis. Discussion: Preliminary evidence exists, demonstrating that vitamins and amino acids may facilitate multilevel changes in musculotendinous healing; however, recommendations on clinical utility should be made with caution. All animal studies and one human study showed high risk of bias with moderate interobserver agreement (k = 0.46). Currently, there is limited evidence to support the use of vitamins and amino acids for musculotendinous injury. Both high-quality animal experimentation of the proposed mechanisms confirming the physiological influence of supplementation and human studies evaluating effects on tissue morphology and biochemistry are required before practical application.

Publisher

Human Kinetics

Subject

Nutrition and Dietetics,Orthopedics and Sports Medicine,General Medicine,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3