Author:
Street Glenn,McMillan Scott,Board Wayne,Rasmussen Mike,Heneghan J. Michael
Abstract
A comprehensive error analysis was performed on the impulse method. To evaluate the potential errors, jump height was recalculated after alteringoneof the measurement or calculation techniquaes while leaving the others unchanged, and then comparing it to the reference jump height (best estimate of true jump height). Measurement techniques introduced the greatest error. Low-pass filters with cutoff frequencies < 580 Hz led to systematic underestimations of jump height, ≤26%. Low sampling frequencies (<1,080 Hz) caused jump height to be underestimated by ≤4.4%. Computational methods introduced less error. Selecting takeoff too early by using an elevated threshold caused jump height to be overestimated by ≤1.5%. Other potential sources of computational error: (a) duration of body weight averaging period; (b) method of integration; (c) gravity constant; (d) start of integration; (e) duration of offset averaging period; and (f) sample duration, introduced < 1% error to the calculated jump height. Employing the recommended guidelines presented in this study reduces total error to ≤ ±0.76%. Failing to follow the guidelines can lead to average errors as large as 26%.
Subject
Rehabilitation,Orthopedics and Sports Medicine,Biophysics
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献