Affiliation:
1. 1University of Michigan
Abstract
Simulation of human movements is an essential component for proactive ergonomic analysis and biomechanical model development (Chaffin, 2001). Most studies on reach kinematics have described human movements in a static environment, however the models derived from these studies cannot be applied to the analysis of human reach movements in vibratory environments such as in-vehicle operations. This study analyzes three-dimensional joint kinematics of the upper extremity in reach movements performed in static and specific vibratory conditions and investigates vibration transmission to shoulder, elbow, and hand along the body path during pointing tasks. Thirteen seated subjects performed reach movements to five target directions distributed in their right hemisphere. The results show similarities in the characteristics of movement patterns and reach trajectories of upper body segments for static and dynamic environments. In addition, vibration transmission through upper body segments is affected by vibration frequency, direction, and location of the target to be reached. Similarities in the pattern of movement trajectories revealed by filtering vibration-induced oscillations indicate that coordination strategy may not be drastically different in static and vibratory environments. This finding may facilitate the development of active biodynamic models to predict human performance and behavior under whole body vibration exposure.
Subject
Rehabilitation,Orthopedics and Sports Medicine,Biophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献