Affiliation:
1. Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, United Kingdom
2. School of Life Sciences, Coventry University, Coventry, United Kingdom
3. Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
Abstract
No studies have reported ground reaction force (GRF) profiles of the repeated depth jump (DJ) protocols commonly used to study exercise-induced muscle damage. Furthermore, while compression garments (CG) may accelerate recovery from exercise-induced muscle damage, any effects on the repeated bout effect are unknown. Therefore, we investigated the GRF profiles of 2 repeated bouts of damage-inducing DJs and the effects of wearing CG for recovery. Nonresistance-trained males randomly received CG (n = 9) or placebo (n = 8) for 72 hours recovery, following 20 × 20 m sprints and 10 × 10 DJs from 0.6 m. Exercise was repeated after 14 days. Using a 3-way (set × bout × group) design, changes in GRF were assessed with analysis of variance and statistical parametric mapping. Jump height, reactive strength, peak, and mean propulsive forces declined between sets (P < .001). Vertical stiffness, contact time, force at zero velocity, and propulsive duration increased (P < .05). According to statistical parametric mapping, braking (17%–25% of the movement) and propulsive forces (58%–81%) declined (P < .05). During the repeated bout, peak propulsive force and duration increased (P < .05), while mean propulsive force (P < .05) and GRF from 59% to 73% declined (P < .001). A repeated bout of DJs differed in propulsive GRF, without changes to the eccentric phase, or effects from CG.