Experimental Model of the Aerodynamic Drag Coefficient in Alpine Skiing

Author:

Barelle Caroline12,Ruby Anne2,Tavernier Michel1

Affiliation:

1. 1French Ski Federation

2. 2Sport Innovation Research Center

Abstract

Aerodynamic properties are one of the factors that determine speed performance in Alpine skiing. Many studies have examined the consequences of this factor in downhill skiing, and the impact of postural modifications on speed is now well established. To date, only wind tunnel tests have enabled one to measure aerodynamic drag values (a major component of the aerodynamic force in Alpine skiing). Yet such tests are incompatible with the constraints of a regular and accurate follow-up of training programs. The present study proposes an experimental model that permits one to determine a skier's aerodynamic drag coefficient (SCx) based on posture. Experimental SCx measurements made in a wind tunnel are matched with the skier's postural parameters. The accuracy of the model was determined by comparing calculated drag values with measurements observed in a wind tunnel for different postures. For postures corresponding to an optimal aerodynamic penetration (speed position), the uncertainty was 13%. Although this model does not permit an accurate comparison between two skiers, it does satisfactorily account for variations observed in the aerodynamic drag of the same skier in different postures. During Alpine ski training sessions and races, this model may help coaches assess the gain or loss in time induced by modifications in aerodynamic drag corresponding to different postures. It may also be used in other sports to help determine whether the aerodynamic force has a significant impact on performance.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3