Bone Alignment Using the Iterative Closest Point Algorithm

Author:

Beek Maarten,Small Carolyn F.,Ellis Randy E.,Sellens Richard W.,Pichora David R.

Abstract

Computer assisted surgical interventions and research in joint kinematics rely heavily on the accurate registration of three-dimensional bone surface models reconstructed from various imaging technologies. Anomalous results were seen in a kinematic study of carpal bones using a principal axes alignment approach for the registration. The study was repeated using an iterative closest point algorithm, which is more accurate, but also more demanding to apply. The principal axes method showed errors between 0.35 mm and 0.49 mm for the scaphoid, and between 0.40 mm and 1.22 mm for the pisiform. The iterative closest point method produced errors of less than 0.4 mm. These results show that while the principal axes method approached the accuracy of the iterative closest point algorithm in asymmetrical bones, there were more pronounced errors in bones with some symmetry. Principal axes registration for carpal bones should be avoided.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3