How Gate Setup and Turn Radii Influence Energy Dissipation in Slalom Ski Racing

Author:

Supej Matej,Holmberg Hans-Christer

Abstract

This study examined whether gate setup and turn radii influence energy dissipation in slalom skiing. 3D kinematical measurements were performed over two runs on the same slope in a WC slalom competition with two different gate setups: 1) open gates (OG) and 2) open gates with a delayed gate (DG). Using the arithmetic mean of the skis’ turn radii (RAMS) the slalom turns were divided into 1) initiation phase (RAMS> 15m) and steering phase (RAMS< 15m). The results show differences between OG and DG regarding: 1) the absolute center of gravity’s (CG) velocity, 2) absolute acceleration, 3) CG turn radii andRAMS, 4) ground reaction forces (F) and 5) energy dissipation during skiing (allp< .05). In both gate setups the highestFand the highest energy dissipation were present in the steering phase, whereas the correlation betweenRAMSand energy dissipation was low (OG:r= .364 and DG:r= .214, bothp< .001). In summary, compared with plain open gates, an additional delayed gate prolonged the turn radii and decreased energy dissipation in the beginning of the initiation phase, despite the fact that the relative frequency of occurrence of the highest energy dissipation was higher in DG.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3