Affiliation:
1. 1Universidade Federal de Minas Gerais
2. 2The Wyss Institute for Biologically Inspired Engineering
3. 3Harvard University
4. 4Penn State Altoona
5. 5University of Colorado Boulder
6. 6Boston University
Abstract
The addition of a load during walking requires changes in the movement pattern. The investigation of the dynamic joint stiffness behavior may help to understand the lower limb joints’ contribution to these changes. This study aimed to investigate the dynamic stiffness of lower limb joints in response to the increased load carried while walking. Thirteen participants walked in two conditions: unloaded (an empty backpack) and loaded (the same backpack plus added mass corresponding to 30% of body mass). Dynamic stiffness was calculated as the linear slope of the regression line on the moment–angle curve during the power absorption phases of the ankle, knee, and hip in the sagittal plane. The results showed that ankle (P = .002) and knee (P < .001) increased their dynamic stiffness during loaded walking compared with unloaded, but no difference was observed at the hip (P = .332). The dynamic stiffness changes were different among joints (P < .001): ankle and knee changes were not different (P < .992), but they had a greater change than hip (P < .001). The nonuniform increases in lower limb joint dynamic stiffness suggest that the ankle and knee are critical joints to deal with the extra loading.
Subject
Rehabilitation,Orthopedics and Sports Medicine,Biophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献