Static Stretching Intensity Does Not Influence Acute Range of Motion, Passive Torque, and Muscle Architecture

Author:

Santos Camila Ximenes,Beltrão Natália Barros,Pirauá André Luiz Torres,Durigan João Luiz Quagliotti,Behm David,de Araújo Rodrigo Cappato

Abstract

Context: Although stretching exercises are commonly used in clinical and athletic practice, there is a lack of evidence regarding the methodological variables that guide the prescription of stretching programs, such as intensity. Objective: To investigate the acute effects of different stretching intensities on the range of motion (ROM), passive torque, and muscle architecture. Design: Two-group pretest–posttest design. Setting: Laboratory. Participants: Twenty untrained men were allocated into the low- or high-intensity group. Main Outcome Measures: Subjects were evaluated for initial (ROMinitial) and maximum (ROMmax) discomfort angle, stiffness, viscoelastic stress relaxation, muscle fascicle length, and pennation angle. Results: The ROM assessments showed significant changes, in both groups, in the preintervention and postintervention measures both for the ROMinitial (P < .01) and ROMmax angle (P = .02). There were no significant differences for stiffness and viscoelastic stress relaxation variables. The pennation angle and muscle fascicle length were different between the groups, but there was no significant interaction. Conclusion: Performing stretching exercises at high or low intensity acutely promotes similar gains in flexibility, that is, there are short-term/immediate gains in ROM but does not modify passive torque and muscle architecture.

Publisher

Human Kinetics

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3