Abstract
Control of static posture is constrained by multiple sensory inputs, motor ability, and task constraints. Development of static postural control across the lifespan can be analyzed effectively using nonlinear analyses of center of pressure (CoP) time series, including approximate and sample entropy. In this paper, the key findings from studies using nonlinear analysis tools are reviewed to describe the development of postural control. Preschool children learn to adopt relatively unstable postures (e.g., standing) in which the regularity of CoP initially increases as a consequence of restricting mechanical degrees of freedom. As children age, CoP regularity decreases as degrees of freedom are released, thus enabling a more functional, adaptable type of postural control. Changes to sensory inputs or task constraints also affect the regularity of CoP sway. For example, removing vision, adding vibration, or imposing dual-task conditions affect performer’s CoP regularity differently. One limitation of approximate and sample entropy analysis is the influence of different input parameters on the output and subsequent interpretation. Ongoing refinement to entropy analysis tools concern determining appropriate values for the length of sequence to be matched and the tolerance level used with CoP data.
Subject
Cognitive Neuroscience,Experimental and Cognitive Psychology,Orthopedics and Sports Medicine,Biophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献