Accuracy of Scaling and DLT Reconstruction Techniques for Planar Motion Analyses

Author:

Brewin Mark A.1,Kerwin David G.1

Affiliation:

1. 1University of Bath

Abstract

Numerous planar analyses of sports activities have utilized scaling techniques to convert image coordinates into real-space locations. While in certain circumstances, such as competition, the camera must be elevated above the activity and its tilt accounted for, the influence of tilt on reconstruction accuracy using scaling is currently unreported. A modification of the direct linear transformation (2D-DLT) which considers only the vertical plane provides an alternative approach for planar reconstruction. This study compared the reconstruction accuracy between scaling and 2D-DLT over a range of tilt angles throughout a 6-m horizontal field of view. Four calibration and 30 reconstruction markers of known locations in a vertical plane were videotaped from nine positions to provide tilt angles varying between –2° and +6°. Both techniques were used to estimate real-space locations for the reconstruction markers, and accuracy was calculated by comparing known and reconstructed locations. The smallest reconstruction errors were obtained using 2D-DLT and were unaffected by camera tilt. The scaling technique produced significantly larger (p < 0.01) errors than 2D-DLT, with the exception of 0° and +1° of tilt, and there was a detrimental effect on accuracy as the magnitude of tilt increased. The largest variations in reconstruction errors were associated with scaling, with markers at the extremes of the image showing the largest errors. The 2D-DLT approach provided accurate reconstruction data for planar analyses across the field of view and throughout the range of tilt angles, and should be preferred over scaling techniques.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3