Author:
Beunen Gaston,Thomis Martine,Peeters Maarten,Maes Hermine H.,Claessens Albrecht L.,Vlietinck Robert
Abstract
The aim of this study is to quantify the genetic and environmental variation in isometric and explosive strength (power) in children and adolescents, using structural equation models. Arm pull (static strength) and vertical jump (explosive strength, power) were measured in 105 twin pairs from the Leuven Longitudinal Twin Study. Boys and girls were tested at annual intervals between 10 and 16 years and at 18 years. Path models were fitted to the observed strength characteristics and a gender heterogeneity analysis was performed at each age level. A model including additive genetic and specific environmental factors (AE-model) allowing for a difference in total phenotypic variance or in genetic/environmental variance components in boys and girls best explains both strength characteristics at most age levels. The additive genetic contribution for isometric strength varies between a2 = .44 and a2 = .83, and for explosive strength between a2 = .47 and a2 = .92, except at 16 years in males. In conclusion there is good evidence that during the growth period both static and explosive strength are under moderate to moderately strong genetic influence.
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Pediatrics, Perinatology and Child Health
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献