The Amount and Pattern of Reciprocal Compensations Predict Performance Stability in a Visually Guided Finger Force Production Task

Author:

Andrade Valéria1ORCID,Carver Nicole S.1ORCID,Grover Francis M.2ORCID,Bonnette Scott3ORCID,Silva Paula L.1ORCID

Affiliation:

1. Department of Psychology, Center for Cognition, Action, & Perception, University of Cincinnati, Cincinnati, OH, USA

2. Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

3. Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

Abstract

Previous work suggests that synergistic activity among motor elements implicated in force production tasks underlies enhanced performance stability associated with visual feedback. A hallmark of synergistic activity is reciprocal compensation, that is, covariation in the states of motor elements that stabilizes critical performance variables. The present study examined if characteristics of reciprocal compensation are indicators of individuals’ capacity to respond adaptively to variations in the resolution of visual feedback about criterion performance. Twenty healthy adults (19.25 ± 1.25 years; 15 females and five males) pressed two sensors with their index fingers to produce a total target force equivalent to 20% of their maximal voluntary contraction under nine conditions that differed in the spatial resolution of real-time feedback about their performance. By combining within-trial uncontrolled manifold and sample entropy analyses, we quantified the amount and degree of irregularity (i.e., non-repetitiveness) of reciprocal compensations over time. We found a U-shaped relationship between performance stability and gain. Importantly, this relationship was moderated by the degree of irregularity of reciprocal compensation. Lower irregularity in reciprocal compensation patterns was related to individuals’ capacity to maintain (or minimize losses in) performance under changes in feedback resolution. Results invite future investigation into how interindividual variations in reciprocal compensation patterns relate to differences in control strategies supporting adaptive responses in complex, visually guided motor tasks.

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3