Cross Validation of Fat-Free Mass Prediction Models for Elite Female Gymnasts

Author:

Bauer Patricia W.,Pivarnik James M.,Fornetti Willa C.,Jallo Jennifer J.,Nassar Lawrence

Abstract

The purpose of this investigation was to evaluate three bioelectrical impedance analysis (BIA) prediction models for fat-free mass (FFM) using the U.S. National Women’s Gymnastics team (N = 48; age = 15.8 ± 1.8 years). One model had been developed recently using dual-energy x-ray absorptiometry (DEXA) as the criterion measure, whereas the other two used hydrodensitometry. In this investigation, FFM predictions were compared with measures obtained via DEXA. FFM measured by DEXA averaged 40.5 ± 7.4 kg (± SD), whereas values generated using the three BIA models were within 0.8 kg of this actual measure. Validity coefficients for all models were high (Rxy = .95-98). FFM prediction error was lowest with the model using DEXA as the criterion measure (1.3 kg) compared with the other two (1.9 and 2.4 kg). All BIA models underpredicted FFM in the heaviest girls, and the Lohman and Van Loan et al. models overpredicted FFM in the lightest girls. Whereas prediction error was significantly correlated to the girls’ bone mineral density in all BIA models, this relationship was strongest in the two that were developed using hydrodensitometry.

Publisher

Human Kinetics

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3