Relationships between Ground Reaction Force Impulse and Kinematics of Sprint-Running Acceleration

Author:

Hunter Joseph P.1,Marshall Robert N.12,McNair Peter J.3

Affiliation:

1. 1The University of Auckland

2. 2Eastern Institute of Technology

3. 3Auckland University of Technology

Abstract

The literature contains some hypotheses regarding the most favorable ground reaction force (GRF) for sprint running and how it might be achieved. This study tested the relevance of these hypotheses to the acceleration phase of a sprint, using GRF impulse as the GRF variable of interest. Thirty-six athletes performed maximal-effort sprints from which video and GRF data were collected at the 16-m mark. Associations between GRF impulse (expressed relative to body mass) and various kinematic measures were explored with simple and multiple linear regressions and pairedt-tests. The regression results showed that relative propulsive impulse accounted for 57% of variance in sprint velocity. Relative braking impulse accounted for only 7% of variance in sprint velocity. In addition, the faster athletes tended to produce only moderate magnitudes of relative vertical impulse. Pairedt-tests revealed that lower magnitudes of relative braking impulse were associated with a smaller touchdown distance (p< 0.01) and a more active touchdown (p< 0.001). Also, greater magnitudes of relative propulsive impulse were associated with a high mean hip extension velocity of the stance limb (p< 0.05). In conclusion, it is likely that high magnitudes of propulsion are required to achieve high acceleration. Although there was a weak trend for faster athletes to produce lower magnitudes of braking, the possibility of braking having some advantages could not be ruled out. Further research is required to see if braking, propulsive, and vertical impulses can be modified with specific training. This will also provide insight into how a change in one GRF component might affect the others.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3